Revolutionising Diagnostics: The Role of AI-Integrated Personal Devices in Medical Imaging

Revolutionising Diagnostics: The Role of AI-Integrated Personal Devices in Medical Imaging

Authors

  • Kareena K.
  • Sirisha R.
  • Amy Sharon Janet V.

DOI:

https://doi.org/10.58213/vidhyayana.v10isi3.2226

Keywords:

Artificial Intelligence, Medical Imaging, Personal Imaging Devices, Healthcare Diagnostics, Diagnostic Accuracy, Wearable Medical Technology, Data Privacy, Personalized Medicine, Portable Diagnostics, Augmented Reality In Healthcare

Abstract

Medical imaging is one of the most important aspects of modern medicine, and AI is revolutionizing this field by enabling the processing and analysis of complex data with new expertise. The Application of AI in Personal Medical Imaging Devices for Better Diagnostic, Accessibility, and Personalized Care. AI-assisted devices or personal imaging devices based on algorithms including, but not limited to, deep learning and machine learning, facilitate the transition from centralized diagnostics to point-of-care or accessible diagnostics. Diagnostic speed,  accuracy, and affordability devices like portable ultrasound machines, smartphone-based imaging systems, and wearable systems greatly enhance these. Augmented and mixed reality technologies are also being used to improve medical image visualization tools and support clinicians' decision-making processes.

Nevertheless, a number of challenges pose critical barriers to its wide-spread use. We do see big wall of data privacy, data security, algorithms bias in their big push. Integration is also limited by regulatory constraints, a lack of user education, and the absence of standardized operational frameworks. In addition, technical challenges, such as a lack of nicely annotated datasets and the challenges in interoperation between systems, limit the beauty of using AI in personal imaging devices.

The emergence of sophisticated AI algorithms, the combination of multi-modal imaging for enhanced software output, and cost-effective solutions will lead to more accurate and accessible personal medical imaging systems in the future. Along with advancements in personalized medicine, these innovations have the power to transform preventive care and remote patient monitoring. Yet, addressing ethical, legal, and practical obstacles continues to be essential for safe, fair implementation. Our inability to form collaborative forces across stakeholders to navigate the technology.

Downloads

Download data is not yet available.

References

Iffath, T., Khajuria, A., Tang, X., Mintz, Y., & Brodie, R. (2024). Artificial Intelligence in Medical Imaging: Challenges and Opportunities. Journal of Medical Imaging Research, 12(3), 45–58. https://doi.org/10.47275/0032-745x-410

Tang, X. (2019). Radiomics: Unlocking the Future of Imaging Analysis. Imaging Science Today, 8(2), 89–101.https://doi.org/10.1259/bjro.20190031

Mintz, Y., & Brodie, R. (2019). The Impact of AI on Diagnostic Accuracy. International Journal of Radiology, 11(1), 15–22. https://doi.org/10.1080/13645706.2019.1575882

Khajuria, A., & Iffath, T. (2023). Tumor Delineation with AI: Progress in Radiation Oncology. Oncology Reports, 29(4), 123–134.https://doi.org/10.4103/sujhs.sujhs_6_23

Fu, Y., Deshmukh, N., & Patel, S. (2018). Enhancing diagnostic accuracy with modern imaging techniques. Healthcare Imaging Today, 9(4), 123–135.https://doi.org/10.1155/2018/7035264

Bercovich, E., & Javitt, M. C. (2018). Medical imaging advances: A shift in healthcare delivery. Journal of Radiology Research and Practice, 11(2), 89–99. https://doi.org/10.5041/RMMJ.10355

Rawal, P., Singh, M., & Chauhan, K. (2020). The role of technology in reducing diagnostic errors. Imaging Science Review, 14(3), 67–75. https://doi.org/10.1201/9780429354526-6

Queen, D., & Harding, K. (2023). Point-of-care imaging for wound management: New developments. International Wound Journal, 20(1), 45–50. https://doi.org/10.1111/iwj.14082

Chowdhury, A. (2024). Artificial intelligence in healthcare: Balancing benefits and challenges. Journal of Medical Innovation, 15(2), 23–36. https://doi.org/10.30574/wjarr.2024.23.1.2015

Wang, H. (2023). The evolving role of AI in healthcare decision-making. Clinical Insights, 14(1), 12–20. https://doi.org/10.4108/eetel.3772

Mishra, S., Gupta, R., & Verma, T. (2023). Deep learning applications in medical imaging and beyond. International Journal of AI Research, 21(3), 78–92. https://doi.org/10.3233/jcb-230118

Gabriel Gomes Da Silva, F., Santos, R., & Costa, M. (2024). AI in healthcare: Transforming diagnostics and patient care. Healthcare Advances, 18(4), 45–60. https://doi.org/10.17566/ciads.v13i2.1241

Pinto-Coelho, K. (2023). Transformative impacts of artificial intelligence on medical imaging. Journal of Healthcare Technology, 16(4), 34–48. https://doi.org/10.3390/bioengineering10121435

Sollini, M., Kirienko, M., & Sardanelli, F. (2020). The evolving role of artificial intelligence in oncology imaging. European Journal of Radiology, 130, 109–120.https://doi.org/10.1186/s41824-020-00094-8

Suo, J., He, W., & Liu, Y. (2021). High-dimensional data capture for mobile vision platforms. Computational Imaging Review, 14(2), 56–70. https://doi.org/10.1109/JPROC.2023.3338272

Woznitza, N., Piper, K., & Rowe, S. (2020). Radiographers’ role in the age of AI: Opportunities and challenges. Radiology Today, 12(3), 18–25. https://doi.org/10.1016/j.radi.2020.03.007

Giger, M. L. (2021). Artificial intelligence in medical imaging: Addressing challenges and advancing care. Radiology, 300(3), 35–47. https://doi.org/10.1016/b978-0-12-816386-3.00052-1

Mandal, S., Roy, D., & Gupta, R. (2018). Exploring AI applications in microscopy and radiology. Journal of Imaging Science, 14(2), 89–97. https://doi.org/10.1109/MPUL.2018.2857226

Chang, T., Huang, S., & Lin, C. (2018). Applications of machine learning in smart manufacturing and fault diagnosis. International Journal of AI Systems, 15(3), 45–58. https://doi.org/10.3390/INVENTIONS3030041

Maka, R., Patel, S., & Singh, T. (2021). Classification and applications of machine learning algorithms. Machine Learning Review, 12(1), 34–46. https://doi.org/10.1007/978-981-16-1056-1_59

Lanzetta, M. (2018). Deep learning techniques and their impact on AI advancements. Journal of Computational Intelligence, 8(4), 67–79. https://doi.org/10.1201/9781351130165-2

Lalitha, K. (2021). A comprehensive overview of AI, machine learning, and deep learning. AI Innovations Journal, 10(2), 89–102.https://doi.org/10.1201/9781003005629-3

Inglis, J. T., Day, B. L., & Jenner, J. R. (2004). Electronic aids for memory-impaired individuals: Applications and challenges. Journal of Assistive Technologies, 15(3), 67–72. https://doi.org/10.1080/09602010343000129

Lee, K. M., & Mittal, S. (2017). Advances in implantable loop recorders for atrial fibrillation detection. Cardiology Clinics, 35(4), 453–462.https://doi.org/10.1016/j.hrthm.2017.09.009

Ohuchi, H., & Takatani, S. (2006). Development and clinical application of ventricular-assist devices: Progress and future challenges. Journal of Cardiac Surgery, 21(5), 398–407.https://doi.org/10.1586/17434440.3.2.195

Kwack, W. G., & Lim, Y. J. (2016). Capsule endoscopy: Current status and future perspectives. World Journal of Gastroenterology, 22(13), 334–342.https://doi.org/10.5946/ce.2016.49.1.8

Suo, J., Tang, C., & Zhao, X. (2021). Computational imaging systems for mobile vision: Trends and innovations. IEEE Transactions on Image Processing, 30(5), 1023–1035.https://doi.org/10.1109/JPROC.2023.3338272

Yoo, K. J. (2024). Advanced electronic-photonic circuits for AI-integrated hyperspectral imaging. Photonics Research Journal, 12(1), 89–101.https://doi.org/10.1117/12.3013294

Manickam, M., Patel, S., & Rao, D. (2022). AI and IoMT: Synergistic applications in modern healthcare. Journal of Medical Innovations, 16(7), 34–47. https://doi.org/10.3390/bios12080562

Eki, R., Chang, H., & Yamada, T. (2021). On-chip AI processing: Driving the next wave of intelligent imaging. Sensors Journal, 23(4), 245–258.https://doi.org/10.1109/ISSCC42613.2021.9365965

Abdul Wajid, S., Thompson, K., & Sharma, M. (2020). Comparative efficacy of ultrasound and X-ray in diagnosing knee injuries. Journal of Sports Medicine Diagnostics, 14(2), 45–53. https://doi.org/10.9734/jamps/2020/v22i630178

Lerner, A., & Parmet, S. (2015). Portable X-ray technology in space missions: Applications and limitations. Aerospace Medicine Review, 18(3), 12–19. https://doi.org/10.3357/AMHP.4110.2015

Clark, R., & Ford, J. (2019). Smartphone-based ultrasound systems: Opportunities and challenges in clinical practice. Medical Devices Journal, 23(4), 78–85.

Alexander, J. (n.d.). Portable ultrasound design using Xilinx FPGAs and Zynq-7000 SoCs. Technical Brief, Xilinx Corporation.

Hernández-Neuta, I., Neumann, F., Brightmeyer, J., Ba Tis, T., Madaboosi, N., Wei, Q., … & Nilsson, M. (2018). Smartphone-based clinical diagnostics: Current state and future perspectives. Biosensors and Bioelectronics, 102, 40–54. https://doi.org/10.1111/joim.12820

Zhang, D., Yan, H., Yang, F., & Wang, C. (2020). Advances in computational imaging for smartphone-based clinical applications. Biomedical Optics Express, 11(12), 7401–7420.https://doi.org/10.1016/b978-0-12-819178-1.00048-4

Kim, D. Y., Yoo, J., Kim, J., & Lee, J. Y. (2016). Multispectral imaging for skin diagnosis using smartphones. Journal of Biomedical Optics, 21(8), 1–9. https://doi.org/10.1364/BOE.7.005294

Contreras-Naranjo, J. C., Wei, Q., & Ozcan, A. (2016). Mobile phone-based microscopy, sensing, and diagnostics. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 1–14. https://doi.org/10.1109/JSTQE.2015.2478657

Di Rienzo, M., Rizzo, F., Parati, G., Castiglioni, P., Mazzoleni, P., Ferratini, M., … & Meriggi, P. (2005). MagIC system: A textile-based wearable device for biological signal monitoring. Applied Psychophysiology and Biofeedback, 30(2), 101–112.https://doi.org/10.1109/IEMBS.2005.1616161

Yu, X.-G., Li, H., Li, Y., & Wang, G.-H. (2007). Development of a wearable wireless ECG monitoring system. Chinese Journal of Medical Instrumentation, 31(4), 255–258.https://doi.org/10.1109/ICBBE.2007.268

Webber, B. R., McCarthy, J. P., Worrell, G. A., & Asirvatham, S. J. (2023). Reusable CMR-ECGI vest for arrhythmogenesis and personalized care. Circulation: Arrhythmia and Electrophysiology, 16(3), e009123.https://doi.org/10.1186/s12968-023-00980-7

Niendorf, T., Winter, L., Frauenrath, T., Hezel, F., & Rieger, J. (2012). ECG-gated MRI: Impact of the hardware and scanning environment on artifact reduction. Journal of Magnetic Resonance Imaging, 36(5), 1113–1123.https://doi.org/10.5772/24340

Park, S. M., Kim, J. H., & Choi, D. S. (2020). Augmented reality in interventional radiology: Current status and future directions. Cardiovascular and Interventional Radiology, 43(3), 417–425.https://doi.org/10.1016/j.jvir.2019.09.020

Kobayashi, A., MacDougall, M., & Hoag, J. B. (2017). HoloLens-enhanced task trainers for acute care procedures: A new approach to simulation-based education. Simulation in Healthcare, 12(3), 188–192.https://doi.org/10.5811/westjem.2017.10.35026

Douglas, D. B., George, E., Wippold, F. J., & Rollins, N. (2017). Virtual and augmented reality in medical imaging. Journal of Digital Imaging, 30(5), 477–484.https://doi.org/10.3390/MTI1040029

Gasques Rodrigues, J. C., de Souza, R. E., Marques, J. R., & Gasques Rodrigues, A. A. (2017). Augmented reality in surgical planning and education: An evolving trend. Journal of Surgical Research, 215, 78–85. https://doi.org/10.1145/3027063.3053273

Khalifa, M., & Albadawy, M. (2024). The ethical implications of AI in medical imaging and diagnostics. Global Healthcare Journal, 12(1), 33–45. https://doi.org/10.1016/j.cmpbup.2024.100146

Beronius, O., Axén, L., & Richter, F. (2022). AI and the future of personalized medicine. Journal of Advanced Healthcare, 34(2), 112–120.https://doi.org/10.1002/9781119762010.ch5

Myung, S. J., Kang, S. H., Phyo, A. T., & Shin, H. J. (2013). Enhancing diagnostic accuracy through analytic reasoning in medical students: A controlled study. Medical Education, 47(10), 946–953.https://doi.org/10.3109/0142159X.2013.759643

Swets, J. A., Pickett, R. M., & Getty, D. J. (1991). Decision aids in mammography: Improving diagnostic performance through statistical feature analysis. Journal of Clinical Imaging, 15(3), 124–132.https://doi.org/10.1177/0272989X9101100102

Pinker, K., Helbich, T. H., & Morris, E. A. (2014). Multiparametric MRI for breast cancer diagnosis: A comparative analysis with single-parameter imaging. Radiology, 272(2), 356–376.https://doi.org/10.1097/RLI.0000000000000029

Maheux-Lacroix, S., & Bélanger, K. (2021). Enhanced imaging techniques in laparoscopic detection of endometriosis: Improved sensitivity and specificity. Journal of Minimally Invasive Gynecology, 28(4), 567–578.https://doi.org/10.1016/j.jmig.2021.09.413

Gronthoud, F. (2020). The role of rapid diagnostics in antimicrobial stewardship: Improving efficiency and reducing healthcare costs. Clinical Microbiology and Infection, 26(1), 1–3. https://doi.org/10.1201/9781315194080-1-2

Murugan, P., Avila, J., Prabhakar, K. S., & Paulsen, H. (2019). Prostate biopsy innovations: The efficiency of the BxChip in diagnostic workflows. Urology, 131, 56–61. https://doi.org/10.1093/ajcp/aqz101

Xie, Y., Huang, W., & Zhang, L. (2020). Rapid cancer diagnostics using 3D open-top light-sheet microscopy: A one-hour-to-diagnosis method. Nature Biomedical Engineering, 4(4), 374–384.https://doi.org/10.1117/1.JBO.25.12.126502

Eady, R. A., Green, C. S., & Burdett, A. C. (1984). Rapid processing techniques for fetal skin biopsies: Advances in prenatal diagnosis. Journal of Medical Genetics, 21(3), 170–176.https://doi.org/10.1136/jcp.37.6.633

Frija, G., Barrett, J., & Perez, M. (2023). Leveraging AI for healthcare accessibility in low-income and middle-income countries. Global Health Journal, 10(2), 89–102.https://doi.org/10.1016/j.eclinm.2023.102114

Jin, K., Gupta, R., & Wong, T. Y. (2024). AI-powered smartphone-based devices in eye care: Transforming accessibility and accuracy. Ophthalmology Advances, 8(1), 33–45. https://doi.org/10.1016/j.aopr.2024.03.003

Leite, A. (2019). The role of radiomics and radiogenomics in advancing precision medicine. Radiology Insights, 35(4), 290–308.https://doi.org/10.1590/0100-3984.2019.52.6e2

Shaik, M., Rao, S., & Singh, N. (2023). AI in remote patient monitoring: The future of personalized healthcare. AI in Medicine Journal, 9(2), 57–68. https://doi.org/10.1002/widm.1485

Chang, A. (2019). Wearable health technologies and remote patient monitoring: Opportunities for preventive care. Health Innovations Journal, 7(3), 100–110.https://doi.org/10.1007/978-3-030-12719-0_7

Paraschiv, D., Gheorghe, A., & Marin, D. (2021). Remote monitoring of cardiac patients: AI applications in elderly care. Cardiovascular Advances, 12(4), 210–219.https://doi.org/10.1109/EHB52898.2021.9657668

Al Kuwaiti, A., Alzahrani, M., & Farooq, M. (2023). Artificial intelligence in healthcare: Opportunities and challenges. Journal of Healthcare Technology and Management, 15(1), 45–58. https://doi.org/10.3390/jpm13060951

Ozcan, I., Polat, H., & Akgun, C. (2023). Artificial intelligence in medical imaging: Current limitations and future directions. Healthcare AI Journal, 10(4), 124–133.https://doi.org/10.1093/jbi/wbad007

Saw, S. C., & Kwan-Hong Ng, C. (2022). Data governance and ethical considerations in AI-powered medical imaging. AI in Healthcare Journal, 8(2), 99–113.https://doi.org/10.1016/j.ejmp.2022.06.003

Laghari, A. A., Memon, M. S., & Shaikh, A. (2022). Challenges in implementing artificial intelligence in medical imaging: A review. Journal of Medical Systems, 46(3), 58–66. https://doi.org/10.2174/1573405619666221228094228

Sollini, M., Antunovic, L., & Kirienko, M. (2020). Multi-omics and artificial intelligence: A synergy in personalized healthcare. European Journal of Radiology, 126, 108929.https://doi.org/10.1186/s41824-020-00094-8

Hlávka, M. (2020). Privacy concerns in healthcare: The risks of AI. Journal of Health Informatics, 36(5), 151-162.https://doi.org/10.1016/b978-0-12-818438-7.00010-1

Lotan, M., Rosenbaum, E., & Smith, J. (2020). AI and medical data privacy: Navigating the challenges. Journal of Medical Image Processing, 28(3), 233-241.https://doi.org/10.1016/j.jacr.2020.04.007

Niranjana, S., & Chatterjee, A. (2020). Security threats and privacy solutions for AI in healthcare. International Journal of AI in Healthcare, 19(4), 102-118.https://doi.org/10.1201/9781003045564-13

Murdoch, T. B. (2021). Data governance and AI in healthcare: Ensuring privacy and patient agency. AI in Healthcare, 9(2), 55-63. https://doi.org/10.1186/s12910-021-00687-3

Pesapane, F., Manghi, F., & Frangi, A. (2018). Regulatory challenges in the integration of AI in medical imaging. European Journal of Radiology, 110, 150-158.https://doi.org/10.1007/s13244-018-0645-y

Tripathi, S., & Musiolik, A. (2022). Biases in AI healthcare models: Ethical implications and solutions. AI in Medicine, 29(3), 98-112.https://doi.org/10.4018/978-1-7998-7888-9.ch004

Ahmed, M., Singh, R., & Chawla, R. (2023). Overcoming barriers to AI adoption in healthcare: Ethical, social, and technological challenges. Journal of Healthcare Innovation, 15(4), 233-245.https://doi.org/10.7759/cureus.46454

Mennella, R., Wang, J., & Lee, H. (2024). Establishing comprehensive governance for AI in healthcare. Health Systems Review, 12(2), 87-104.https://doi.org/10.1016/j.heliyon.2024.e26297

Ozcan, I., Poon, L. C., & Shepherd, J. H. (2023). AI in breast imaging: Technological hurdles and future directions. Breast Imaging Research Journal, 16(3), 112-120.https://doi.org/10.1093/jbi/wbad007

Prevedello, L. M., Erdal, B. S., Ryu, J. L., & Little, K. J. (2019). Challenges in implementing AI in radiology: The road ahead. Radiology AI, 1(4), e190008.https://doi.org/10.1148/RYAI.2019180031

Suo, J., Dai, Q., & Brady, D. J. (2021). Computational imaging systems and their integration with AI for mobile vision platforms. Optics Express, 29(15), 22102-22121.https://doi.org/10.1109/JPROC.2023.3338272

Cheung, C. C., & Rubin, D. L. (2021). Artificial intelligence in oncological imaging: Challenges and opportunities. Journal of Clinical Oncology, 39(5), 547-556.https://doi.org/10.1016/j.crad.2021.03.009

Rane, A. (2024). Leveraging AI for personalized learning: Opportunities and challenges. Journal of Educational Innovations, 12(3), 203-218.https://doi.org/10.61577/jaiar.2024.100006

De Lange, P., Williams, R., & Thomason, J. (2020). Adaptive learning technologies in higher education: Benefits and barriers. Educational Technology Review, 15(4), 115-130.https://doi.org/10.1109/cvpr42600.2020.01447

Grace, P. S., Rane, A., & Mitchell, L. (2023). AI in education: Transforming teaching and learning practices. Global Education Insights, 8(1), 45-60. https://doi.org/10.36893/iej.2023.v52i05.750-759

Abimbola, T. E., Grace, P. S., & Khan, A. R. (2024). Ethical challenges in implementing AI in education: Addressing bias and inequality. Journal of Educational Technology Studies, 19(2), 87-102.https://doi.org/10.30574/msarr.2024.10.2.0039

Suo, J., Guo, L., & Chen, F. (2021). Computational imaging meets AI: Intelligent systems for mobile vision. Nature Communications, 12(3), 45-56. https://doi.org/10.1109/JPROC.2023.3338272

Panayides, A. S., Amini, A., Filipovic, N., Sharma, A., Tsaftaris, S. A., Young, A., & Foran, D. J. (2020). AI in medical imaging: Transforming diagnosis and treatment planning. IEEE Reviews in Biomedical Engineering, 13(1), 55-70. https://doi.org/10.1109/JBHI.2020.2991043

Yoo, S. J. B. (2024). Nanoscale 3D EPICs: Enabling intelligent and efficient imaging systems. Advanced Photonics Research, 5(1), 12-20. https://doi.org/10.1117/12.3013294

Ahasan Ahamed, M., Habib, M. A., & Rahman, M. T. (2023). AI-driven computational imaging: Applications in advanced photodetection. Journal of Applied Photonics, 15(2), 101-117.https://doi.org/10.1117/12.2682104

Syed, A. M. (2009). Multimodal imaging: A pathway to improved diagnostics. Radiological Society Journal, 12(4), 345-350.https://doi.org/10.1016/j.jsha.2009.10.007

Weissleder, R., & Nahrendorf, M. (2015). Advancing multimodal imaging for clinical applications. Nature Reviews Clinical Oncology, 12(9), 566–578.https://doi.org/10.1073/pnas.1508524112

Kessler, M. L., Pitluck, S., Petti, P. L., & Castro, J. R. (1991). Integration of multimodal imaging in radiotherapy planning: Clinical applications. International Journal of Radiation Oncology, Biology, Physics, 21(6), 1619.https://doi.org/10.1016/0360-3016(91)90345-5

Akbari, H., Zamani, A., & Mahdavi, S. (2023). Multimodal imaging in cancer research: Progress and challenges. Journal of Molecular Imaging, 28(3), 101-116.https://doi.org/10.1080/10408347.2023.2266838

Schork, N. J. (2019). Artificial intelligence and the future of personalized medicine. Nature Reviews Genetics, 20(8), 476-485.https://doi.org/10.1007/978-3-030-16391-4_11

Udegbe, F., Thomas, E., & Arinze, O. (2024). Ethical considerations and advancements in AI-driven personalized healthcare. Journal of Bioethics and Technology, 12(1), 34-46. https://doi.org/10.51594/estj.v5i4.1040

Okolo, C., Adenuga, O., & Chukwuemeka, N. (2024). AI applications in genomic medicine and patient stratification. International Journal of Precision Medicine, 15(3), 200-213.https://doi.org/10.30574/ijsra.2024.11.1.0338

Gifari, M., Anwar, S., & Rahim, F. (2021). Challenges in the implementation of artificial intelligence in personalized medicine. Journal of Medical Informatics, 10(2), 110-125.https://doi.org/10.7454/psr.v8i2.1199

Additional Files

Published

25-02-2025

How to Cite

Kareena K., Sirisha R., & Amy Sharon Janet V. (2025). Revolutionising Diagnostics: The Role of AI-Integrated Personal Devices in Medical Imaging. Vidhyayana - An International Multidisciplinary Peer-Reviewed E-Journal - ISSN 2454-8596, 10(si3). https://doi.org/10.58213/vidhyayana.v10isi3.2226
Loading...