Mesogenic Schiff'S Base Diester with Chloroethyl Tail

Mesogenic Schiff'S Base Diester with Chloroethyl Tail

Authors

  • Akash S. Patel

Keywords:

chloroethyl tail, Schiff’s base, Smectic A, nematic, mesomorphic properties

Abstract

One new mesogenic homologous series of Schiff’s base diester with chloroethyl tail having the following general formula.

R= -CnH2n+1 (n=1 to 8,10,12,14, &16)

have been synthesized. The molecular structures of the synthesized compounds were characterized by the standard spectroscopic methods and elemental analysis. The mesomorphic behaviour of these new Schiff’s base esters was mainly investigated with the help of optical polarizing microscope. For some representative compounds differential scanning calorimetric study was carried out to support the optical observation of transition temperatures and associated enthalpies. In series I, lower members are nematic-mesophase, whereas higher members exhibit smectic mesophase. In series I, methoxy to n-hexyloxy derivatives exhibit nematic mesophase, while the smectic A phase commences from n-propyloxy derivative and persists up to the last member synthesized. As well as n-propyloxy to n-hexyloxy derivatives exhibit smetic and nematic mesophase. The mesomorphic properties of these series of compounds are compared with each other and with structurally related systems.

Downloads

Download data is not yet available.

References

Dave JS, Bhatt HS. Synthesis of liquid crystals with lateral methyl group and study of their mesomorphic properties. Molecular Crystals and Liquid Crystals. 2012;562(1):1–9.

Quan -Y-Y, Wang D, He -Q-Q, et al. V-shaped Schiff’s base liquid crystals based on resorcinol: synthesis and characterisation. Liq Cryst. 2020;47(5):737–749.

Gray, G. W. (1962). Molecular Structure and the Properties of Liquid Crystals, Academic Press: London and New York. (b) Hird, M., Toyne, K. J., Gray, G. W., Day, S. E., & Donell, D. G. M. (1993). Liq.Cryst., 15, 123–150. (c) Hird, M., Goodby, J. W., Gough, N., & Toyne, K. J. (2001). J. Mater. Chem., 11, 2732–2742. (d) Gray, G. W., Hird, M., Lacey, D., & Toyne, K. J. (1989). J. Chem. Soc., 2, 2041–2053.

Dave, J. S., Kurian, G., Prajapati, A. P., & Vora, R. A. (1971). Mol. Cryst. Liq. Cryst., 14, 307.

Liu, X. H., Abser, M., Nurul, B., Duncan, W. (1999). J. Organomet. Chem., 577, 150–152.

Isse, A. A., Gennaro, A., & Vianello, E. (1997). Electrochim. Acta, 13–14, 2065–2071.

Desai, S. B., Desai, P. B., & Desai, K. R. (2001). Heterocycl. Commun., 7, 83–90.

Kelker, H., Scheurle, B. (1969). Angew. Chem. Int. Ed. Eng. 8, 884–885.

Matsunaga, Y., Hikosaka, L., Hosono, K., Ikeda, N., Saka-Tani, T., Sekiba, K., Takachi, K., Takahashi, T., & Uemura, Y. (2001). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 369, 103–116.

Yeap, G. Y., Ha, S. T., Lim, P. L., Boey, P. L., Ito, M. M., Sanehisa, S., & Youhei, Y. (2006). Liq. Cryst., 33, 205–211.

Campillos, E., Marcos, M., Oriol, L. T., & Serrano, J. L. (1992). Mole. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 215, 127–135.

Dave, J. S., & Prajapati, A. P. (1975). Pramana, Suppl. No.1, 435

Dave, J. S., & Kurian, G. (1977). Mol. Cryst. Liq. Cryst., 42, 193.

Ha, S. T., Foo, K. L., Subramaniam, T., Ito, M. M., Sastry, S. S., & Ong, S. T. (2011). Ch. Chem. Lett., 22, 1191–1194.

Ooi, Y. H., Yeap, G. Y., & Takeuchi, D. (2013). J. Mol. Stru., 1051, 361–375.

Ha, S. T., Onga, L. K., Wan Wong, J. P., Yeap, G. Y., Linc, H. C., Onga, S. T., & Koh, T. M. (2009). Phase Transitions., 82, 387.

Ha, S. T., Ong, L. K., Sivasothy, Y., Yeap, G. Y., Boey, P. L. and Lin, H. C. (2010). American Journal of Applied Sciences, 7(2), 214.

Yeap, G. Y., Ha, S. T., Boey, P. L., & Mahmood, W. A. K. (2006). Mol. Cryst. Liq. Cryst., 452, 73–90.

Huang, C. C., Hsu, C. C., Chen, L. W., & Cheng, Y. L. (2014). Soft. Matter., 10, 9343–9351.

Ha, S. T., Ong, L. K., Wong, J. P. W., Yeap, G. Y., Lin, H. C., Ong, S. T., & Koh, T. M. (2009). Phase Transitions., 82, 387–397.

Yeap, G. W., Ha, S. T., Lim, P. L., Ito, M. M., & Sanehisa, S. (2004). Mol. Cryst. Liq. Cryst., 423, 73–84.

Dave, J. S., & Kurian, G. (1997). Mol. Cryst. Liq. Cryst., 175–183.

Yelamaggad, C. V., Mathews, M., Nagamani, A., Shankar Rao, D. S., Prasad, S. K., Findeisen, S., & Weissflog, W. (2007). J. Mater. Chem., 17, 284–298.

Chaudhari, R. P., Doshi, A. A., & Doshi, A. V. (2013). Mol. Cryst. Liq. Cryst., 582, 63–71. (b) Chauhan, H. N., & Doshi, A. V. (2013). Mol. Cryst. Liq. Cryst., 570, 12–19. (c) Chauhan, H. N., Shah, R. R., & Doshi, A. V. (2012). Mol. Cryst. Liq. Cryst., 577, 36–43. (d) Chaudhari, R. P., & Doshi, A. V. (2012). Mol. Cryst. Liq. Cryst., 569, 49–56.

Suthar, D. M., & Doshi, A. V. (2012). Mol. Cryst. Liq. Cryst., 569, 64–71

Vyas GN, Shah NM. Org Syn Coll. 1963;(4) (Revised-edition of annual volume 30-39, John Wiley and Sons Inc., New York; p. 836).

Dave, J. S. and Patel, P.R., Mol.Cryst.,2,115(1966).

Vogel, A. I., A Textbook of Practical Organic Chemistry, E. L. B. S. and Longman Group Ltd., Fifth Edition,897(1989).

Hassen, A. and Alexanian, V., Tetra. Lett., 4475 (1978).

Prajapati AK, Bonde NL, Patel HN. Mesogenic Schiff’s base ester with chloroethyl tail. Phase Transitions. 2005;78(6):507-513. DOI 10.1080/01411590500188876.

Prajapati AK, Bonde NL, Patel HN. Mesogenic Schiff’s base ester with chloroethyl tail. Phase Transitions. 2005;78(6):507-513. DOI 10.1080/01411590500188876.

A.K. Prajapati, H.C. Sharma and N.K. Chudgar, Mol. Cryst. Liq. Cryst. 364 813 (2001)

Gray GW. Molecular structure and properties of liquid crystals. London and New York (NY): Academic Press; 1962.

Additional Files

Published

30-10-2023

How to Cite

Akash S. Patel. (2023). Mesogenic Schiff’S Base Diester with Chloroethyl Tail. Vidhyayana - An International Multidisciplinary Peer-Reviewed E-Journal - ISSN 2454-8596, 9(si1). Retrieved from http://vidhyayanaejournal.org/journal/article/view/1493
Loading...